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Abstract
We present a new way to estimate the lifetime distribution of a reparable system
consisted of similar (equal) components. We consider as a reparable system, a system
where we can replace a failed component by a new one. Assuming that the lifetime
distribution of all components (originals and replaced ones) are the same, the position
of a single component can be represented as a renewal process. There is a considerable
amount of works related to estimation methods for this kind of problem. However,
the data has information only about the time of replacement. It was not recorded
which component was replaced. That is, the replacement data are available in an
aggregate form. Using both Bayesian and a maximum likelihood function approaches,
we propose an estimation procedure for the lifetime distribution of components in
a repairable system with aggregate data. Based on a latent variables method, our
proposed method out-perform the commonly used estimators for this problem. The
proposed procedure is generic and can be used with any lifetime probability model.
Aside from point estimates, interval estimates are presented for both approaches.
The performances of the proposed methods are illustrated through several simulated
data, and their efficiency and applicability are shown based on the so-called cylinder
problem. The computational implementation is available in the R package srplv.
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1 Introduction

A system is defined as a set of working components performing a given task. A
repairable system is a system characterized by the replacement of a failed component
by a new working component of the same kind, in each specific position. Assuming
that the new component lifetime distribution is the same as the replaced one, a single
component position can be represented by a renewal process (Rinne 2008). Under
this assumption, some works presented methods to analyze the renewal process data
(Crowder et al. 1994; Crow 1990; Meeker and Escobar 2014; Nelson 2003).

The objective is to estimate the lifetime distribution of components that form the
system. It is important for many purposes, such as collecting information for future
system design and maintenance planning for individual units (Zhang et al. 2017).
However, there are situations in which the information about the exact position the
failure occurred is not available (Miyakawa1984;Liu et al. 2017;Rodrigues et al. 2018,
2019; Wang et al. 2015). As a reviewer of this manuscript pointed out, the reason that
the position information was not in the database is that such databases were designed
to provide financial information, and not engineering information. Such problemswith
warranty and maintenance databases are common.

For repairable system when the event time for each replacement is available, but
we do not know which component underwent the replacement, data are available in
an aggregate form. This aggregate data form a superposed renewal process (SRP)
(Zhang et al. 2017). The scenario considered in this work is the following: a fleet of
independent systems (sample) is observed. Within each system, there is a set of m
identical components, and when a component fails, it is replaced by a functioning
one in its position, which we will call as a socket. Although the number of failures r
within the interval [0, τ ], τ is the end-of-observation time, can be observed for a given
system, this information is unknown for the single sockets.

The challenge is how to estimate the components’ lifetime distribution in a SRP
scenario. In Fig. 1, an example is presented with m = 2 sockets and the observed
failures. The true failures occurred at socket 1 and socket 2 are shown in the first two
lines. These underlying failure times are unobserved at the two positions. What it is
really observed is the superposed failure times, which is shown in the third line. Once
it is only observed the failure times without the information about the socket in which
each failure occurs, it is unobserved the failure time of each component.

There are some studies that deal with SRP data. Peixoto (2009) propose assigning
the event times to sockets randomly, and then using simulation to correct for bias in
order to estimate the components’ failure time distribution. Krivtsov et al. (2017) con-
sider superposed recurrent data scenario, but their focus is of classification nature, that
is, to classify a second claim as a repeat failure in a socket in which a component has
already been replaced once, or as the first failure occurred in another socket. Dewanji
et al. (2012) deal with the situation when the number of components is unknown, and
they propose a nonparametric estimator was proposed to estimate this unknown num-
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Fig. 1 An illustrated example for the case with m = 2 components and the observed failures. This figure
is based on Figure 1 from Song and Xie (2018)

ber. Song and Xie (2018) develop a method to estimate superposed renewal processes
by using the first few observed failure times without knowing the failure locations,
considering all possible combinations to provide exact joint distribution in the like-
lihood function and for the rest observed failure times, they use some asymptotic
distribution in the likelihood function.

Zhang et al. (2017) propose a procedure for estimating the component lifetime
distribution from a collection of SRP by maximizing its likelihood function. The
likelihood function is given by the sum of all possible data configurations, that is,
all possible combinations in which the r failures might occur across the m sockets.
However, the number of all possible data configurations increases exponentially with
the number of failures, and for large numbers of m and r , the computation of the
maximum likelihood is too expensive. Thus, depending on the numbers of failures
and components for each system in the fleet, the computational time is very costly,
and in some situations, it is not possible to compute by considering their method. In
this way, as the authors discuss, the method proposed by them is only applicable for
dealing with a fleet of SRPs where each SRP only has a relatively small number of
failures.

This work aims to estimate the components’ lifetime distribution of the part based
on the superposed failure times without restrictions about the numbers of components
and failures. Our two methods—a maximum likelihood and a Bayesian approach—
consider latent variables during the estimation process. The contributions are as
follows:

– Under the maximum likelihood approach, we expect that considering latent vari-
ables and estimating the parameters via the Expectation Maximization (EM)
algorithm (Robert et al. 2010) solves the limitation of the approach by Zhang
et al. (2017), i.e, not being able to compute the maximum likelihood estimator
regardless of the number of failures and components. Besides, in situations in
which the method of Zhang et al. (2017) is useful, we expect that both methods
yield similar performances, once they proposemaximizing the likelihood function.

– By proposing a Bayesian approach to solve the problem, we develop a useful
method for incorporating expert knowledge and/or past experiences as a pri-
ori distribution, besides considering the statistical inference under the Bayesian
paradigm.

Under the parametric approach, our proposed methods are generic, and any proba-
bility distribution on positive support can be considered for the components’ lifetime
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distributions. Aside from point estimates, interval estimates are discussed for both
approaches.

The remainder of this manuscript is organized as follows. In Sect. 2, we describe
the data structure. Sections 3 and 4 present the maximum likelihood and Bayesian
approaches inmore detail. Bothmethods are evaluated bymeans of simulation studies,
in which they are compared with the method proposed by Zhang et al. (2017), in
scenarios this last is possible, and the corresponding results are given in Sect. 5.
Section 6 shows the applicability of the methodology in the cylinder dataset and Sect.
7 concludes this work.

2 Data structure

Consider a series system with m components operating in m sockets (position of each
component). When a component fails, it is recorded the failure time of the system, and
the failed component is replaced by a new one in the same socket. However, there is
no register of which socket the component was replaced. In the following paragraph,
we will define quantities for a single socket and hence, for simplicity, we omit the
socket indices.

Let Yl be a random variable denoting the lifetime of the component in a specific
socket, for l = 1, 2, . . .. Note that, the second component (Y2) will replace the first
component (Y1) when this one fails. The third component (Y3) will replace the second
component (Y2), and so on. Also, assume that the components’ lifetimes (Y1,Y2, . . .)
are independent and identically distributed (i.i.d.). Let Zk be a positive randomvariable
that denotes the time of the k-th components lifetime in a specific socket. Then,
Zk = ∑k

l=1 Yl , k ≥ 1, and {Zk} is a renewal process (RP), that is, each socket in the
system represents a RP.

Let Tk be the k-th failure time of the system, in which T1 = min{Y11,Y21, . . . ,Ym1}
and Y j1 denotes the first component failure time in the j-th socket, j = 1, . . . ,m. Let
T = (t1, t2, . . . , tr , τ ) denote the observed event history of a single SRP (superposed
renewal process) with event times t1 < t2 < . . . < tr , and end-of-observation time τ

with τ > tr . The data consist of n independents SRPs, corresponding to the n systems
in the fleet.

The assumptions made here are:

1. the lifetime distribution is the same for all components, in all sockets and systems;
2. the failures are independent between all components, and all sockets;
3. all sockets within one system have the same end-of-observation time τ ; and
4. the n systems in the fleet are independent.

3 Maximum likelihood approach

Under the assumption that the components’ lifetimes are i.i.d., let f (·) = f (· | θ) and
R(·) = R(· | θ) be the density and reliability functions of the component lifetime,
where θ is a vector, with dimension p, of unknown parameters.
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Consider a sample of n systems. Let t i = (t1i , t2i , . . . , tri i ) be the vector of
observed ri failure times for the i-th system and τi the end-observation time, with
i = 1, . . . , n, in which T i = (t i , τi ) is the observed data for the i-th system. Let
di = (d1i , d2i , . . . , dri i ) the vector that indicates the position of the ri failures, in
which dki = j , if the k-th failure occurred in the j-th socket for the i-th system, for
j = 1, . . . ,m, k = 1, . . . , ri and i = 1, . . . , n.
For instance, lets assume that di is observed, and consider a system i with m = 16

components, ri = 3 failures, di1 = d3i = 1 and d2i = 13, were observed. The
likelihood contribution of this system is

f (t1i ) f (t3i − t1i )R(τi − t3i ) f (t2i )R(τi − t2i )[R(τi )]m−2. (1)

Note that the likelihood contribution of system i given in (1) considers that di =
(d1i , d2i , d3i ) is known. In a aggregate scenario, the actual failure positions (sockets)
di of system i are not observable. Hence, there are Vi = mri = 163 = 4,096 different
possible configurations of the likelihood contributions for this system, in which Vi is
the number of possible data configurations of system i , with m sockets, and ri failure
times. The likelihood contribution of the i-th system is given by

Li =
Vi∑

v=1

Liv,

in which Liv is the likelihood contribution of the v-th configuration for system i .
Considering that a fleet of n independent systems is observed, the likelihood function
for θ is

L(θ | T ) =
n∏

i=1

[ Vi∑

v=1

Liv

]

, (2)

where T = (T 1, . . . ,T n). Zhang et al. (2017) propose the maximization of the
likelihood function given in (2).

In the aggregate scenario, di is a vector of latent variables. A suitable approach for
estimating the parameter values,whichmaximize the likelihood function, is to consider
an expectation-maximization (EM) algorithm, which is presented in the following
subsection.

3.1 EM algorithm

The EM algorithm is an iterative method with Expectation (E), and Maximization
(M) steps (Dempster et al. 1977). The E-step evaluates the expectation of the full log-
likelihood function, and the M-step tries to find the parameter configuration, which
maximizes the expectation found within the E-step.
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The complete likelihood function [i.e., the likelihood function with augmented data
(Robert et al. 2010)] of θ is given by

L(θ | T , d) =
n∏

i=1

Li (θ | T i , di ). (3)

The form of Li (θ | T i , di ) depends on the number of failures ri . For this reason,
a general form is presented in the following.

Given di , let �i be the set of vi component indexes that cause at least one failure
for system i . Also, vi = 0 when no failure is observed . Let xilk the k-th failure time
caused by the l-th element of �i , with l = 1, . . . , vi and k = 1, . . . , nl . For instance,
for system i with ri = 3 failures observed, d1i = d3i = 1, and d2i = 13, we have that
�i = {1, 13}, vi = 2, n1 = 2, n2 = 1, xi11 = t1i , xi12 = t3i , and xi21 = t2i . Thus,∑vi

l=1 nl = ri .
The likelihood contribution of the i-th system can be written as

Li (θ | T i , di ) =
{ vi∏

l=1

[ nl∏

k=1

f (xilk − xil(k−1))

]

R(τi − xilnl )

}1−I(vi=0)

R(τi )
m−vi ,

where xil0 = 0, and indicator function I(A) = 1, if A is true, and 0 otherwise.
Let li (θ | T i , di ) = log Li (θ | T i , di ). The logarithm of the complete likelihood

in (3) can be written as

l(θ | T , d) =
n∑

i=1

li (θ | T i , di )

=
n∑

i=1

{[
1 − I(vi = 0)

][ vi∑

l=1

nl∑

k=1

log f (xilk − xil(k−1)) +
vi∑

l=1

log R(τi − xilnl )

]

+(m − vi ) log R(τi )

}

(4)

Let θr be the value assumed by θ in the r -th iteration of the algorithm. The (r+1)-th
E-step consists of calculating the expectation of (4), that is,

Q(θ | θr ) = E
[
l(θ | T , d) | T ; θr

]
. (5)

Unfortunately, there exists no analytical expression of the expectation in (5). Instead,
it can be approximated by Monte-Carlo simulations. Consider that L random samples
d(1)
i , . . . , d(L)

i are simulated based on f (di | T ), i.e., the density function of d con-
ditional to T , i = 1, . . . , n (for more details, see Sect. 3.1.1). Thus, the E-step results
in calculating

Qm(θ | θr ) = 1

L

L∑

l=1

l(θ | T , d(l)) = 1

L

L∑

l=1

n∑

i=1

li
(
θ | T i , d

(l)
i

)
. (6)
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TheM-stepmaximizes (6)with respect to θ resulting in θr+1. The optimizationmethod
considered within this work is the Nelder–Mead algorithm (Nelder and Mead 1965).
The E- and M-steps are alternated until the difference of estimates between two con-
secutive iteration values is less than 10−4. The estimate (̂θ) of θ is obtained when the
convergence criterion is reached.

Let g(θ) be a function of θ . Due to the invariance property of the maximum
likelihood estimator (MLE), the MLE of g(θ) is g(̂θ). For instance, if the Weibull
distribution with parameters β > 0 (shape) and η > 0 (scale) is assumed for compo-
nents’ failure times, in which θ = (β, η), the expected lifetime of the component is
E(Y ) = g(θ) = η�(1 + (1/β)), and its MLE is by g(̂θ) = η̂�(1 + (1/β̂)), where β̂

and η̂ are the MLE of β and η, respectively (Casella and Berger 2002). Analogous, the

MLE for the component reliability function is R̂(y) = exp
[

− (y/η̂)β̂
]
, for y > 0.

3.1.1 Conditional distribution of d givenT

For a fixed i ,

f (di | T i ) = f (d1i , d2i , . . . , dri i | T i )

= f (dri i | T i , d(ri−1)i , d(ri−2)i , . . . , d2i , d1i ) f (d(ri−1)i | T i , d(ri−2)i , . . . , d1i )

× · · · × f (d2i | T i , d1i ) f (d1i | T i ). (7)

The conditional distribution of d given T is presented in Eq. (7) for any number
of failures ri ≥ 1. In order to present the idea, consider a particular case with ri = 3.
Then, T i = (t1i , t2i , t3i , τi ), and

f (di | T i ) = f (d1i , d2i , d3i | T i )

= f (d3i | T i , d2i , d1i ) f (d2i | T i , d1i ) f (d1i | T i ). (8)

The development of each term of the last side of the Eq. (8) is presented in the
following.

Under i.i.d assumption, the distribution of d1i = j | T i follows a Multinomial
distribution, Multin(1, p1i ), where p1i = (p11i , . . . , p1mi ) and p1 j i = 1/m, j =
1, . . . ,m. Note that, in this case, the multinomial distribution is, in fact, a discrete
uniform distribution.

Before discussing the distribution of d2i | (T i , d1i = j), one comment is important
to point: when we develop the distribution of dvi conditional to the distribution of
the indicator of the socket that each previous failure occurred, that is, conditional to
(d(v−1)i , d(v−1)i , . . . , d2i , d1i ), with v = 2, . . . ,m, one only needs to worry about the
number of sockets that the previous failures occurred and the index of the last failure
that occurred in each socket that had failure, regardless the socket index, because we
are assuming the lifetime distributions of the components at the sockets are i.i.d. So,
the distribution of d2i conditional to the socket that the first failure occurred, say at

123



A. Rodrigues et al.

Fig. 2 The two possible situations of how two failures can occur in the sockets

the socket j (any j ∈ {1, . . . ,m}), can be described as follows:

f (d2i | T i , d1i = j) ∝ [ f (t2i − t1i )]I(d2i= j)
m∏

l=1;l �= j

[ f (t2i )]I(d2i=l),

that is, d2i | (t i , d1i = j) follows Multin(1, p2i ), in which p2i = (p21i , . . . , p2mi ),
p2 j i = f (t2i − t1i )/C and p2li = f (t2i )/C , l = 1, . . . ,m and l �= j , with C =
f (t2i − t1i ) + (m − 1) f (t2i ).
Now, we need to specify the distribution of d3i conditional to the values assumed

by d2i and d1i . For that, one has to consider the following two situations: (1) the first
failure occurs at a given socket, say at the socket j , and the second failure occurs at
the same socket, that is, it also occurs at the socket j (Fig. 2a); and (2) the first failure
occurs at a given socket, say at the socket j , and the second failure occurs at a different
socket, say at the socket q (Fig. 2b), with j �= q, j = 1, . . . ,m and q = 1, . . . ,m.

So, depending on each situation, the conditional distribution of d3i is given by:

– Situation 1: distribution of d3i | (T i , d1i = j, d2i = j):

f (d3i | T i , d1i = j, d2i = j) ∝ [ f (t3i − t2i )]I(d3i= j)
m∏

l=1;l �= j

[ f (t3i )]I(d3i=l),

that is, d3i | (T i , d1i = j, d2i = j) follows Multin(1, p3i ), in which p3i =
(p31i , . . . , p3mi ), p3 j i = f (t3i − t2i )/C and p3li = f (t3i )/C , l = 1, . . . ,m and
l �= j , with C = f (t3i − t2i ) + (m − 1) f (t3i ).

– Situation 2: distribution of d3i | (T i , d1i = j, d2i = q), with q �= j :

f (d3i | T i , d1i = j, d2i = q) ∝ [ f (t3i − t1i )]I(d3i= j)[ f (t3i − t2i )]I(d3i=q)

×
m∏

l=1;l �= j,q

[ f (t3i )]I(d3i=l),

that is, d3i | (T i , d1i = j, d2i = q) follows Multin(1, p3i ), in which p3i =
(p31i , . . . , p3mi ), p3 j i = f (t3i − t1i )/C , p3qi = f (t3i − t2i )/C and p3li =
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f (t3i )/C , l = 1, . . . ,m and l �= j, q, with C = f (t3i − t1i )+ f (t3i − t2i )+ (m −
2) f (t3i ).

The distribution in the Eq. (7) depends on the number of failures. In the supple-
mentary material we present, as an example, the conditional distribution of d with
ri = 5.

3.2 Asymptotic distribution

The asymptotic distribution of the maximum likelihood estimator θ̂ can be approx-
imated by a multivariate normal distribution with mean θ and variance-covariance
matrix Iθ (θ)−1, where Iθ (θ) is the observed information matrix for θ . As demon-
strated by Louis (1982), Iθ (̂θ) is the sum of

I1(θ | θ̂) = − ∂2

∂θ∂θ� Q(θ | θ̂) and I2(θ | θ̂) = −Var

{
∂

∂θ
l(θ | T , d)

∣
∣
∣T ; θ̂

}

.

The matrix I1(θ | θ̂) can be estimated by

− ∂2

∂θ∂θ� Qm(θ | θ̂) = − 1

L

n∑

i=1

L∑

l=1

∂2

∂θ∂θ� li
(
θ | T i , d

(l)
i

)∣
∣
∣
∣
θ=θ̂

,

where d(l)
i , with l = 1, . . . , L , being a random sample from the distribution of f (di |

T i ) for the i-th system.
An estimate of I2(θ | θ̂) results from the sum of

n∑

i=1

{
1

L

L∑

l=1

∂

∂θ
li
(
θ | T i , d

(l)
i

)∣
∣
∣
∣
θ=θ̂

}{
1

L

L∑

l=1

∂

∂θ
li
(
θ | T i , d

(l)
i

)∣
∣
∣
∣
θ=θ̂

}�

and

− 1

L

n∑

i=1

L∑

l=1

{
∂

∂θ
li
(
θ | T i , d

(l)
i

)}{
∂

∂θ
li
(
θ | T i , d

(l)
i

)}�∣
∣
∣
∣
θ=θ̂

.

Detailed derivation of Iθ (̂θ)−1 for the Weibull lifetime model, with parameters β

(shape), and η (scale), is given in the “Appendix” section.
An asymptotic γ% confidence interval for θ (C Iγ%) is given by

C Iγ% =
(
θ̂ − z(1−γ /2)

√
(I11, . . . , Ipp); θ̂ + z(1−γ /2)

√
(I11, . . . , Ipp)

)
,

in which I j j denotes the j th element of the main diagonal of Iθ (̂θ)−1.
Confidence intervals for functions of θ can be obtained by the delta method (Casella

and Berger 2002).
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3.3 Model selection criteria

We have considered the the following model selection criteria, based on the maxi-
mized log-likelihood: AIC (Akaike Information Criterion), AICc (Corrected Akaike
Information Criterion), BIC (Bayesian Information Criterion), HQIC (Hannan-Quinn
Information Criterion) and CAIC (Consistent Akaike Information Criterion), which
are computed, respectively, by AIC = 2p−2l, AICc = AIC+2p(p+1)/(n−p−1),
BIC = p log n − 2l, HQIC = 2p log(log n) − 2l and CAIC = p(log n + 1) − 2l,
where p is the number of parameters of the fitted model, n is the sample size and l
is the maximized log-likelihood function value, obtained by evaluating (6) in the last
iteration of EM algorithm estimates.

Given a set of candidate models, the preferred model is the one which provides the
lowest criteria values.

4 Bayesian approach

In the Bayesian approach, the latent variable vector d is faced as parameter vector.
Thus, the posterior distribution of (θ , d) can be written as

π(θ, d | T ) ∝ π(θ , d)L(θ, d | T ), (9)

where L(θ , d | T ) has the same form as (3) in which d now is considered as parameter
and π(θ , d) is the prior distribution of (θ , d).

In real-world settings, it is possible that the prior distributions can be influenced by
expert knowledge and/or past experiences on the functioning of the components. In
this work, no prior information about the functioning of the components is available,
which is the reason for the choice of non-informative prior distributions, besides of
the assumption that the parameters are independent a prior.

Given the posterior density in Eq. (9) does not have a closed form, statistical
inferences about the parameters can rely on Markov-Chain Monte-Carlo (MCMC)
simulations. Here, we consider the Metropolis within Gibbs algorithm (Tierney 1994)
once it is possible to sample some of the parameters directly from the conditional
distribution; however, this is not possible for other parameters. The algorithm works
in the steps presented in Algorithm 1.

Discarding burn-in (i.e., the first generated values are discarded to eliminate the
effect of the assigned initial values for parameters) and jump samples (i.e., gaps
between the generated values in order to avoid correlation problems), a sample of
size n p from the joint posterior distribution of (θ , d) is obtained. The sample from the
posterior distribution can be expressed as (θ1, θ2, . . . , θn p ). Posterior quantities of θ

can be easily obtained (Robert et al. 2010). For instance, the posterior mean of θ can
be approximated by

1

n p

np∑

k=1

θk .
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Algorithm 1 The Metropolis within Gibbs algorithm.

1: Assign initial values θ (0) for θ and set b = 1.

2: Draw d(b)
i from π(di | T i , θ) from

π(di | T i , θ) = π(d1i , d2i , . . . , dri i | T i , θ)

= π(dri i | T i , θ , d(ri−1)i , d(ri−2)i , . . . , d2i , d1i ) ×
×π(d(ri−1)i | T i , θ , d(ri−2)i , . . . , d2i , d1i ) . . . π(d2i | T i , θ , d1i )π(d1i | T i , θ),

in an analogous way presented in Sect. 3.1.1, for i = 1, . . . , n, and d(b) = (d(b)
1 , . . . , d(b)

n ).

3: Draw θ (b) from

π(θ | T , d(b)) ∝ π(θ)

n∏

i=1

{[ vi∏

l=1

( nl∏

k=1

f (xilk − xil(k−1))

)

×R(τi − xilnl )

]1−I(vi=0)

R(τi )
m−vi

}

,

through Metropolis–Hastings algorithm (Robert et al. 2010).
4: Set b = b + 1 and repeat steps 2. and 3. until b = B, where B is the predefined number of simulated

samples of (θ , d).

The sample from the posterior distribution of g(θ) can be expressed as (g(θ1),
g(θ2), . . . , g(θn p )) and posterior quantities of g(θ) can be obtained. For instance,
the posterior mean of the reliability function can be approximated by

1

n p

np∑

k=1

R(t | θk), t > 0.

The proposed approach is generic and straightforward for any probability distri-
bution. Thus, it may be of interest to consider a model selection criterion. Below a
criterion based on the conditional predictive ordinates is presented.

4.1 Conditional predictive ordinate

A criterion for model selection that can be considered is based on the conditional
predictive ordinates (CPO). For the i-th system, the conditional predictive ordinate
(CPO) can be expressed as

CPOi = f (T i | T −i ) =
∑

d

∫

f (T i | θ , d)π(θ , d | T −i )∂θ

=
{∑

d

∫
π(θ , d | T )

f (T i | θ, d)
∂θ

}−1

≈
{

1

n p

np∑

k=1

1

f (T i | θk, dk)

}−1

,
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in which T −i = (T 1, . . . ,T i−1,T i+1, . . . ,T n) and (θk, dk), for k = 1, . . . , n p,
represent a sample from the posterior distribution of (θ , d).

High values of CPOi indicate that the model is capable of describing the i-th
observation adequately (Gilks et al. 1995). The LPML (log pseudo marginal likeli-
hood) measure is the sum of the logarithms of the CPO of all the observations, that

is, LPML = ∑n
i=1 log

(
CPOi

)
and the higher the LPML value is, the better the

model fit.

5 Model evaluation bymeans of a simulation study

This section presents the results from simulation studies to evaluate the performance
of the estimation methods described above in regards to the estimation quality. In
scenarios the method of Zhang et al. (2017) works, we compare its performance with
those of the proposed methods.

Thus, the following estimation methods were fitted: Bayesian approach (BA), max-
imum likelihood estimator via EM algorithm (EM-ML) and maximum likelihood
estimator obtained by Zhang et al. (2017) (Z-ML). The Z-ML estimates were obtained
by means of the R-package SRPML (R Core Team 2020; Zhang et al. 2015). The pro-
posed methods BA and EM-ML were fitted through the R package srplv. This
package was built by authors in order to make the methodology available for applica-
tions.

The steps for generating the data of each simulated example, with m being the
number of sockets and n the sample size, are presented in Algorithm 2. The mean (7)
and variance (4) values of component failure time distribution are based on cylinder
application data (Sect. 6).

Algorithm 2 Data generation.
1: for each system unit i = 1, . . . , n do
2: Draw τi from a Weibull distribution with mean mc and variance 0.05.
3: Draw Y11i , Y21i , . . . , Ym1i from a Weibull distribution with mean 7 and variance 4, where Y j1i is

the first component failure time in the j-th socket, for j = 1, . . . ,m.

4: Let T1i = min
{
Y11i , Y21i , . . . , Ym1i

}
.

5: if T1i ≥ τi then
6: stop simulation process and ri = 0.
7: else
8: Let Yl1i = min

{
Y11i , Y21i , . . . , Ym1i

}
, then t1i = Yl1i .

9: Draw Yl2i from Weibull distribution with mean 7 and variance 4 conditional to Yl2i > t1i , where
Yl2i is the second component failure time in the l-th socket, once the first failure occurred in the l-th
socket.

10: Let T2i = min
{
Y11i , Y21i , . . . ,Yl2i , . . . , Ym1i

}
.

11: if T2i ≥ τi then
12: stop simulation process and ri = 1.
13: else
14: repeats steps 8 to 10 until Tri < τi < T(ri+1).

15: The dataset is T i = {t1i , t2i , . . . , tri i , τi }, for i = 1, . . . , n.
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In this section, the Weibull distribution with parameters β > 0 (shape) and η > 0
(scale) is assumed for components’ failure times, inwich θ = (β, η). ForBA, the priors
of Weibull parameters are considered to be independent gamma distributed with mean
1 and variance 100. Besides, dli followsMultin(1, pli ), where pli = (pl1i , . . . , plmi )

and pl ji = 1/m, with j = 1, . . . ,m.
To obtain posterior quantities, we used an MCMC procedure to generate a sample

from the posterior distribution of the parameters. We generated 20,000 samples from
the posterior distribution of each parameter. The first 10,000 of these samples were
discarded as burn-in samples. A jump of size 10 was chosen to reduce correlation
effects between the samples. As a result, the final sample size of the parameters
generated from the posterior distribution was 1,000. The chains’ convergence was
monitored in all simulation scenarios for good convergence results to be obtained.

For the EMalgorithm considered to obtain EM-MLestimates, we consider L = 100
and the discussion about the choice of this number based on the scenario considered
in this work is presented in the supplementary material.

The mean absolute error (MAE) from each estimator to the true reliability of each
method is considered as performance measure. R(t) and R̂(t) are the true reliability
function and the estimate, respectively. Hence, the MAE is evaluated by 1

l

∑l
	=1 |

R̂(g	) − R(g	) |, where {g1, . . . , g	, . . . , gl} is a grid in the space of failure times.
First, we conducted two simulated examples, presented in the following. Second,

scenarios with different sample sizes, number of sockets and censor mean time are
considered.

5.1 Simulated examples

We conducted two simulated examples considering n = 100, m = 16 and mc = 4
(Example 1) or mc = 8 (Example 2), in which mc represents the mean of censor
distribution, considered in step 2 in Algorithm 2. It is worth noting that the expected
number of failures with mc = 8 is larger than with mc = 4.

For the Bayesian approach, the Gelman–Rubin convergence diagnostic statistics
(Gelman and Rubin 1992) for parameters β and η are 1.0011 and 1.0004, respectively,
in Example 1 and they are 1.0002 and 1.0027 in Example 2. The measures are close
to 1, which suggests that convergence chains have been reached.

For EM-ML, 8 and 17 EM iterations have been executed for Examples 1 and 2,
respectively, and the corresponding values are listed in Table 1. For both examples,
the initial values for (β, η) are (1, 1). After the first iteration it was (1.206, 32.335) for
Example 1, after the second one it was (3.165, 8.766) and then reached the covergence
region. For Example 2, it took about eight iterations to reach the covergence region.
Figure 3 presents contour plots of the log-likelihood function, as well as the iteration
values from the second to the eighth iteration for Example 1 and from third to 17-th
iteration for Example 2. The convergence was obtained fast for both examples.

TheWeibull parameter estimates obtained by BA, EM-ML and Z-ML are presented
in Table 2. Note that the Z-ML estimation is not presented for Example 2, because
those values could not be computed due to the high number of components and failures.
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Table 1 EM algorithm iteration
values of Weibull parameters for
two simulated examples

Iterations Example 1 Example 2
β η β η

Initial value 1.000 1.000 1.000 1.000

1 1.206 32.335 0.400 31.479

2 3.165 8.766 0.627 17.346

3 3.716 7.793 0.796 13.848

4 3.726 7.780 0.979 11.866

5 3.727 7.778 1.220 10.445

6 3.726 7.780 1.557 9.401

7 3.727 7.778 2.007 8.694

8 3.727 7.778 2.550 8.254

9 – – 3.050 8.025

10 – – 3.379 7.924

11 – – 3.539 7.884

12 – – 3.603 7.869

13 – – 3.630 7.863

14 – – 3.634 7.862

15 – – 3.638 7.861

16 – – 3.639 7.861

17 – – 3.639 7.861

The details about limitations of this method in situation of high numbers of failures
and components are given in Zhang et al. (2017).

The estimates for the component reliability function obtained by BA, EM-ML, Z-
ML, as well as the true reliability function, are presented in Fig. 4. Table 3 lists the
MAE values, in which maximum likelihood approaches (EM-ML and Z-ML) present
lower MAE values for Example 1, whereas BA and EM-ML present similar MAE
values for Example 2.

5.2 Simulation studies in different scenarios

We conducted the simulations for all combinations of the following features: n ∈
{10, 50, 100, 200}, m ∈ {4, 8, 16, 32}, and mc ∈ {4, 8}, resulting in 32 scenarios.
For each scenario, 100 datasets were generated, and we compare the MAE from the
estimators to the true distribution.

The boxplot graphs of 100 MAE values are presented in Fig. 5. The results can be
split into two parts: 1) Z-ML is applicable and 2) Z-ML is not applicable. For the first
one, in general, the methods present similar performance, as one can see in Fig. 5a, b
in case of m ∈ {4, 16} . When mc = 8 the BA method presents higher MAE means
but the boxplot graph intersects with the boxplot graphs obtained by other methods.

Noticeably, Fig. 5b does not contain any boxplots for Z-ML in case ofm ∈ {16, 32}.
However, this is plausible as this method was not able to compute the respective
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Fig. 3 Contour plots of the log-likelihood function and EM algorithm iteration values (dots) for Example
1 (with mc = 4) and for Example 2 (with mc = 8), in which mc indicates the expected end-of-observation
time

Table 2 Weibull model parameters (β, η) and expected components’ time to failure (E(Y )) estimation
based on different estimation models: the Bayesian approach (BA), the EM maximum likelihood method
(EM-ML) and the maximum likelihood approach from Zhang et al. (Z-ML) of simulated examples

Parameters Example 1 Example 2

Mean SD HPD 95% Mean SD HPD 95%

BA

β 3.696 0.321 3.095 4.357 3.638 0.118 3.410 3.858

η 7.890 0.522 6.906 8.912 7.861 0.074 7.733 8.007

E(Y ) 7.118 0.439 6.282 7.971 7.087 0.064 6.982 7.216

Parameters Example 1 Example 2

MLE SE CI 95% MLE SE CI 95%

EM-ML

β 3.728 0.377 2.989 4.466 3.641 0.089 3.467 3.815

η 7.777 0.585 6.631 8.924 7.860 0.053 7.757 7.964

E(Y ) 7.022 0.487 6.067 7.976 7.087 0.048 6.993 7.182

Z-ML

β 3.729 0.323 3.096 4.361 – – – –

η 7.776 0.488 6.820 8.732 – – – –

E(Y ) 7.021 0.409 6.218 7.823 – – – –

There are no Z-ML estimates in Example 2 because it could not be computed due to the high number of
components and failures
SD means standard deviation; SE means standard error; HPD means highest posterior density; CI means
confidence interval. The true parameters values are: β = 3.924, η = 7.734 and E(Y ) = 7
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Fig. 4 Component reliability function estimation through the Bayesian approach (BA), the EM maximum
likelihood method (EM-ML) and the maximum likelihood approach from Zhang et al. (Z-ML) for two
scenarios of simulated examples, besides the generating curve (true). There is no Z-ML curve in Example
2 because it could not be computed due to the high number of components and failures

Table 3 MAE values obtained
by the Bayesian approach (BA),
the EM maximum likelihood
method (EM-ML) and the
maximum likelihood approach
from Zhang et al. (Z-ML) of two
simulated examples

BA EM-ML Z-ML

Example 1 0.0117 0.0057 0.0057

Example 2 0.0080 0.0079 –

There are no MAE values for Z-ML in Example 2 because they could
not be computed due to the high number of components and failures

estimates due to the high number of failures and components. The computational time
of each scenario was greater than four days and encountered errors in estimation.

On the other hand, the computational times and availability of EM-ML and BA
are not influenced that much (as the Z-ML method does) by the numbers of failures
and components. In Fig. 6 are presented the average of the computational times to
get the BA and EM-ML estimates over the 100 generated datasets. As one can see,
for mc = 8 and mainly when the sample size and the number of the components are
high, the proposed methods take more computational time on average, but this is not
impractical and it is possible to get estimates by the proposed methods. This way, the
proposed methods are able to solve the problem for all cases regardless the scenario.

In short, in settings as those from Fig. 5b, Z-ML fails to compute the components’
failure time distribution, whereas the two proposed methods find solutions. For the
settings in which Z-ML finds solutions, the proposed methods also find solutions and
present similar performance.
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Fig. 5 Boxplot graphs of the 100MAE values of the Bayesian approach (BA), the EMmaximum likelihood
method (EM-ML) and the maximum likelihood approach from Zhang et al. (Z-ML) in scenarios with
different sample sizes (n) and number of components (m). There are no Z-ML MAE boxplots in case of
m ∈ {16, 32} and mc = 8 because they could not be computed due to the high number of components and
failures

Fig. 6 Average of the computational time of the Bayesian approach (BA) and the EMmaximum likelihood
method (EM-ML) in scenarios with different sample sizes (n), number of components (m) and for mc = 4
and mc = 8

6 Cylinder dataset analysis

In order to present the applicability of the proposed methodologies, a real cylinder
dataset presented by Zhang et al. (2017) is also considered here. More details about
this dataset can be found at Meeker and Escobar (2014) and Nelson and Doganaksoy
(1989). A fleet of n = 120 diesel engines (systems) is observed. Each engine has 16
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Table 4 Distributon of number
of failures (r ) of 120 systems
from cylinder dataset

r Number of systems %

0 46 38.3

1 32 26.7

2 18 15.0

3 14 11.7

4 5 4.2

5 4 3.3

6 1 0.8

Total 120 100.0

Table 5 Selection criteria under frequentist approach obtained by the fitted models for cylinder dataset

Model l AIC AICc BIC HQIC CAIC

Weibull −677.81 1359.62 1359.72 1365.20 1361.89 1367.20

gamma −673.86 1351.73 1351.83 1357.31 1353.99 1359.31

lognormal −671.15 1346.30 1346.41 1351.88 1348.67 1353.88

log-logistic −677.00 1357.99 1358.10 1363.57 1360.26 1365.57

exponential −779.76 1561.53 1561.56 1564.31 1562.66 1565.31

identical cylinders working in series, that is, the first cylinder to fail causes the engine
failure.When a cylinder fails, it is replaced by an identical functioning one in the socket
(cylinder position), but the information about which socket each replacement comes
from was not recorded. So, for each diesel engine, it is only observed the number of
failures (r ) and the failure time of each failure. Table 4 presents the distribution of the
number of failures across all 120 systems.

We fitted models assuming the following distributions for components’ failure
times: Weibull, gamma, lognormal, log-logistic and exponential. All models were
fit considering the R package srplv, which was built by authors and it is available
for the community. Under the frequentist approach, the lognormal model presents the
lowest value for all selection criteria (Table 5) and as a consequence, it is the selected
model.

Under the Bayesian paradigm, for each model, we run the Metropolis within Gibbs
sampler, discarding the first 20,000 as burn-in samples and using a jump of size 20
to avoid correlation problems, obtaining a sample size of 1,000. We evaluated the
convergence of the chain by multiple runs of the algorithm from different starting
values and the chains’ convergence was monitored through graphical analysis, and
good convergence results were obtained. Further, we considered the Gelman–Rubin
convergence diagnostic statistics. The measures are close to 1 for all parameters in all
fitted models, as shown in Table 6, which suggests that convergence chains have been
reached.

The LPML values are presented in Table 6 and the lognormal model is the chosen
one once it presents the largest LPML value.
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Table 6 Gelman–Rubin
statistics and LPML measures
obtained by the fitted models for
cylinder dataset

Model Gelman–Rubin statistics LPML

Weibull 1.0014–1.0024 −687.05

gamma 1.0032–1.0048 −680.55

lognormal 1.0020–1.0021 −676.52

log-logistic 1.0030–1.0033 −687.08

exponential 0.9997–0.9999 −781.00

Table 7 Lognormal model parameters (μl , σl ) and expected components’ time to failure (E(Y )) estimation
based on the Bayesian approach (BA) and the EM Maximum Likelihood method (EM-ML) of cylinder
dataset

Parameters Posterior mean Posterior SD HPD 95%

BA

μl 2.2494 0.0597 2.1361 2.3677

σl 0.5464 0.0369 0.4749 0.6208

E(Y ) 11.0519 0.8887 9.5231 12.9137

Parameters MLE SE CI 95%

EM-ML

μl 2.2443 0.0952 2.0577 2.4309

σl 0.5433 0.0554 0.4346 0.6520

E(Y ) 10.9345 1.3673 8.2546 13.6144

SDmeans standard deviation; SEmeans standard error; HPDmeans highest posterior density and CI means
confidence interval

Table 7 lists the posterior mean obtained by BA and EM-ML estimates for the
parameters of μl (mean of logarithm), σl (standard deviation of logarithm) and
expected time of components’ lifetime, E(Y ) = exp

{
μl +σ 2

l /2
}
. The expected times

of the component lifetime obtained by BA and EM-ML are 11.05 and 10.93 years,
respectively. In general, the BA and EM-ML estimates are close for all parameters, as
expected.

The posterior mean and the 95% highest posterior density (HPD) point-wise band
of the component reliability function are illustrated in Fig. 7a. Besides, the posterior
mean and the 95% highest posterior density (HPD) point-wise band of E(Zk), for
k = {0, 1, . . . , 49, 50}, are presented in Fig. 7b. The estimation for the reliability
function obtained by EM-ML estimator is similar to the estimate obtained by the
Bayesian approach.

7 Conclusion

ABayesianmodel and amaximum likelihood estimator (MLE)were proposed in order
to estimate identical components failure timedistribution involved in a repairable series
system with masked cause of failure. For both approaches, latent variables were con-

123



A. Rodrigues et al.

Fig. 7 Component reliability function and expected time of occurence of the k-th failure in the socket
estimates through Bayesian approach of cylinder dataset

sidered in the estimation process through EM algorithm for MLE and Markov-Chain
Monte-Carlo (MCMC) for the Bayesian approach. The proposed models are generic
and straightforward for any probability distribution on positive support. In estima-
tion processes, satisfactory results about the convergence of the MCMC’s chains and
EM algorithm were obtained, evaluated through graphical analysis and convergence
performance measures.

Simulation studies were realized in scenarios with different sample sizes, number
of components and distributions for censor lifetime. The mean absolute error (MAE)
from each estimator to the true distribution was considered as performance measure.
In situations of high numbers of failures and/or components, it was not possible to
compute the maximum likelihood estimator proposed by Zhang et al. (2017) (Z-ML)
through the package SRPML. In contrast to this well-established approach by Zhang
et al. (2017), our proposed methods are not affected that much by the high numbers
of failures and/or components. Instead they work perfectly even in these situations.
Besides, in settings in which Z-ML finds solutions, the proposed methods also find a
solution and achieve a similar performance. Thus, the huge advantage of our proposed
methods is that they estimate the components’ failure time distribution regardless of
the number of failures and components.

The practical applicability was assessed in cylinder dataset, in which components’
failure time quantities were estimated convincingly. The R package srplv was built
by authors in order to make the methodology available for applications. The package
is available in github.com/agathasr/srplv.

In this work, the assumption of independent and identically distributed (i.i.d.) com-
ponents failure times has been made and found to be suitable for the cylinder dataset
characteristics. However, this assumption might not be applicable to other scenarios.
Thus, in future works, our proposed method can be extended to situations in which
the assumption of independent and identically distributed failure times is violated.
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Moreover, within future works we will also investigate the suitability of our approach
for the assessment of system reliability rather than cylinder reliability, which has been
the focus of this work.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00180-021-01124-0.
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Appendix

Wecanwrite the logarithmof the complete likelihood function of i-th system ifWeibull
distribution with parameter β (shape) and η (scale) is assumed, as

li (θ | t i , di ) =
[
1 − I(vi = 0)

][ vi∑

l=1

nl∑

k=1

log f (xilk − xil(k−1))

+
vi∑

l=1

log R(τi − xilnl )

]

+ (m − vi ) log R(τi )

=
[
1 − I(vi = 0)

] vi∑

l=1

nl∑

k=1

{

log(β) − log(η) + (β − 1)
[
log(xilk − xil(k−1))

− log(η)
]

−
(
xilk − xil(k−1)

η

)β}

−
[
1 − I(vi = 0)

] vi∑

l=1

(
τi − xilnl

η

)β

− (m − vi )

(
τi

η

)β

=
[
1 − I(vi = 0)

]{

ri log(β) − ri log(η) + (β − 1)
vi∑

l=1

nl∑

k=1

log(xilk − xil(k−1))

−ri (β − 1) log(η) −
vi∑

l=1

[ nl∑

k=1

(
xilk − xil(k−1)

η

)β

+
(

τi − xilnl
η

)β]}

−(m − vi )

(
τi

η

)β

.
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The first derivatives 0f li (θ | t i , di ) in relation to β and η, respectively, are

dli (θ | t i , di )
dβ

=
[
1 − I(vi = 0)

]{ri
β

+
vi∑

l=1

nl∑

k=1

log(xilk − xil(k−1)) − ri log(η)

+ log(η)

(
1

η

)β[ vi∑

l=1

( nl∑

k=1

(xilk − xil(k−1))
β + (τi − xilnl )

β

)]

−
(
1

η

)β[ vi∑

l=1

nl∑

k=1

log(xilk − xil(k−1))(xilk − xil(k−1))
β

+
vi∑

l=1

log(τi − xilnl )(τi − xilnl )
β

]}

+
(
1

η

)β

(m − vi )τ
β
i [log(η) − log(τi )],

and

dli (θ | t i , di )
dη

=
[
1 − I(vi = 0)

]{

− ri
η

− ri (β − 1)

η
+ β

(
1

η

)β+1

[ vi∑

l=1

nl∑

k=1

(xilk − xil(k−1))
β +

vi∑

l=1

(τi − xilnl )
β

]}

+ β

(
1

η

)β+1

(m − vi )τ
β
i .

The second derivatives are

d2li (θ | t i , di )
dβ2 =

[
1 − I(vi = 0)

]{

− ri
β2 − [log η]2

(
1

η

)β

×
[ vi∑

l=1

( nl∑

k=1

(xilk − xil(k−1))
β + (τi − xilnl )

β

)]

+ 2 log(η)

(
1

η

)β

×
[ vi∑

l=1

nl∑

k=1

log(xilk − xil(k−1))(xilk − xil(k−1))
β +

vi∑

l=1

log(τi − xilnl )(τi − xilnl )
β

]

−
(
1

η

)β[ vi∑

l=1

nl∑

k=1

[log(xilk − xil(k−1))]2(xilk − xil(k−1))
β

+
vi∑

l=1

[log(τi − xilnl )]2(τi − xilnl )
β

]}

+(m − vi )

(
1

η

)β

τ
β
i

[

− [log(τi )]2 + 2 log(τi ) log(η) − [log(η)]2
]

,
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d2li (θ | t i , di )
dβ dη

=
[
1 − I(vi = 0)

]{

− ri
η

+
[(

1

η

)β+1

(1 − β log(η))

]

×
[ vi∑

l=1

( nl∑

k=1

(xilk − xil(k−1))
β + (τi − xilnl )

β

)]

+β

(
1

η

)β+1[ vi∑

l=1

nl∑

k=1

log(xilk − xil(k−1))(xilk − xil(k−1))
β

+
vi∑

l=1

log(τi − xilnl )(τi − xilnl )
β

]}

+(m − vi )

(
1

η

)β+1

τ
β
i [1 − β log(η) + β log(τi )],

and

d2li (θ | t i , di )
dη2

=
[
1 − I(vi = 0)

]{βri
η2

− β(β + 1)

(
1

η

)β+2

[ vi∑

l=1

( nl∑

k=1

(xilk − xil(k−1))
β + (τi − xilnl )

β

)]}

− β(β + 1)

(
1

η

)β+2

(m − vi )τ
β
i .

Thus,

I = − ∂2

∂θ∂θ� Q(θ | θ̂) = − 1

L

n∑

i=1

L∑

l=1

∂2

∂θ∂θ� li
(
θ | t i , d(l)

i

)∣
∣
∣
∣
θ=θ̂

=

⎡

⎢
⎢
⎣

− 1
L

∑n
i=1

∑L
l=1

d2li (θ |t i ,d(l)
i )

dη2

∣
∣
∣
∣
θ=θ̂

− 1
L

∑n
i=1

∑L
l=1

d2li (θ |t i ,d(l)
i )

dη dβ

∣
∣
∣
∣
θ=θ̂

− 1
L

∑n
i=1

∑L
l=1

d2li (θ |t i ,d(l)
i )

dβ dη

∣
∣
∣
∣
θ=θ̂

− 1
L

∑n
i=1

∑L
l=1

d2li (θ |t i ,d(l)
i )

dβ2

∣
∣
∣
∣
θ=θ̂

⎤

⎥
⎥
⎦ ,

in which θ̂ = (̂η, β̂). Besides,

I I =
n∑

i=1

{
1

L

L∑

l=1

∂

∂θ
li
(
θ | t i , d(l)

i

)∣
∣
∣
∣
θ=θ̂

}{
1

L

L∑

l=1

∂

∂θ
li
(
θ | t i , d(l)

i

)∣
∣
∣
∣
θ=θ̂

}�

=
n∑

i=1

{
1

L

L∑

l=1

(
dli (θ | t i , d(l)

i )

dη

∣
∣
∣
∣
θ=θ̂

,
dli (θ | t i , d(l)

i )

dβ

∣
∣
∣
∣
θ=θ̂

)�}

×
{
1

L

L∑

l=1

(
dli (θ | t i , d(l)

i )

dη

∣
∣
∣
∣
θ=θ̂

,
dli (θ | t i , d(l)

i )

dβ

∣
∣
∣
∣
θ=θ̂

)�}�
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and

I I I = − 1

L

n∑

i=1

L∑

l=1

{
∂

∂θ
li
(
θ | t i , d(l)

i

)}{
∂

∂θ
li
(
θ | t i , d(l)

i

)}�∣
∣
∣
∣
θ=θ̂

= − 1

L

n∑

i=1

L∑

l=1

{(
dli (θ | t i , d(l)

i )

dη
,
dli (θ | t i , d(l)

i )

dβ

)�}

{(
dli (θ | t i , d(l)

i )

dη
,
dli (θ | t i , d(l)

i )

dβ

)�}�∣
∣
∣
∣
θ=θ̂

.

The quantity Iθ (̂θ) can be estimated by I + I I + I I I .
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